Search results for "Rare-Earth Elements"

showing 7 items of 7 documents

Finite amplitude method applied to giant dipole resonance in heavy rare-earth nuclei

2015

Background: The quasiparticle random phase approximation (QRPA), within the framework of the nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of the atomic nuclei. Recently, finite amplitude method (FAM) has been developed, in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investig…

Physicsgiant dipole resonanceIsovectorta114Nuclear Theory010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciences01 natural sciences3. Good healthNuclear physicsNuclear Theory (nucl-th)DipoleEffective mass (solid-state physics)0103 physical sciencesAtomic nucleusQuasiparticleheavy nucleiSum rule in quantum mechanics010306 general physicsRandom phase approximationNuclear ExperimentNuclear densityrare-earth elements
researchProduct

Radiation responses of Yb/Er-doped phosphosilicate optical fibers: hardening mechanisms related to Ce-codoping

2012

International audience; In this paper, we investigated the origins of the Ce positive influence on the radiation response of Yb/Er-doped phosphosilicate optical fibers. To this purpose, we carried out during γ-irradiations an online characterization on active optical fiber prototypes, made with different Ce concentrations and integrated in optical amplifiers. The hardening effect of Ce-codoping is highlighted, as well as some aspects related to the radiation response of the phosphosilicate host glass of the active optical fibers.

Radiation EffectsOptical Amplifiers[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Rare-Earth Elements Optical Amplifiers Radiation EffectsRare-Earth ElementsRadiation Effects.
researchProduct

Rare‐earth cyclobutadienyl sandwich complexes: Synthesis, structure and dynamic magnetic properties

2018

The potassium cyclobutadienyl [K2{η4‐C4(SiMe3)4}] (1) reacts with MCl3(THF)3.5 (M=Y, Dy) to give the first rare‐earth cyclobutadienyl complexes, that is, the complex anions [M{η4‐C4(SiMe3)4}{η4‐C4(SiMe3)3‐κ‐(CH2SiMe2}]2−, (2M), as their dipotassium salts. The tuck‐in alkyl ligand in 2M is thought to form through deprotonation of the “squarocene” complexes [M{η4‐C4(SiMe3)4}2]− by 1. Complex 2Dy is a single‐molecule magnet, but with prominent quantum tunneling. An anisotropy barrier of 323(22) cm−1 was determined for 2Dy in an applied field of 1 kOe, and magnetic hysteresis loops were observed up to 7 K. nonPeerReviewed

magneettiset ominaisuudetcyclobutadienyl ligandsmagneetitchemistry.chemical_element010402 general chemistry01 natural sciencesCatalysisDeprotonationAnisotropyta116magnetsAlkylQuantum tunnellingchemistry.chemical_classificationkemiallinen synteesiorganometallics dysprosium010405 organic chemistryLigandOrganic ChemistrykompleksiyhdisteetGeneral Chemistryharvinaiset maametallitMagnetic hysteresis0104 chemical sciencesCrystallographychemistryMagnetDysprosiumsingle-moleculerare-earth elements
researchProduct

Role of Ce3+ as sensitizer for the infrared luminescence of phosphosilicate Er/Yb doped glasses

2012

The luminescence properties of the Yb/Er-doped phosphosilicate preforms used for the design of active optical fibers were investigated under a tunable laser excitation from ultraviolet to infrared domain. We demonstrated that codoping the glass matrix with Ce3+ ions strongly influences the infrared emission associated with Er3+ ions, it enhances the energy transfer from Yb3+ to Er3+ ions, and it provides an additional ultraviolet excitation channel for the emission of both Yb3+ and Er3+ ions. The excitation/emission pathways are discussed on the basis of models proposed in literature for other systems.

Settore FIS/01 - Fisica SperimentaleInfrared spectra laser excitation rare-earth elements spectroscopy
researchProduct

YREE determination in seawater. Standardization and validation of a new method based on preconcentration techniques

2010

The most interesting attraction of using rare-earth elements and yttrium (YREE) to address geochemical and marine chemical problems consists of their chemical coherence as group of trace elements. These characters allow YREE compositions of rocks and minerals to be extensively used in studies of provenance, petrogenesis and chemical evolution of the geological materials (1). Similarly, YREE compositions in the hydrosphere were used in studies of coagulation, particle-solution reactions and oceanic circulation of water masses (2-4). Unfortunately, very low concentrations of YREE (ng l-1 or sub-ng l-1) associated to high ionic strength of seawater always represented the main difficulty to ana…

YREErare-earth elementsICP-MS
researchProduct

Rare-earth elements and yttrium distributions in mangrove coastal water systems: The western Gulf of Thailand

2005

The concentration of rare-earth elements and yttrium (REY) was investigated in dissolved phase, suspended particulate matter, and seafloor sediments of the western coastal area of the Gulf of Thailand. The samples show Eu and Gd positive anomalies in the shale-normalized REY patterns, especially in the suspended particulate matter. On the other hand, a very high REE content was detected in the coastal waters, probably due to the weathering produced by the Mae Klong river waters on rare-earth element (REE)-rich accessory minerals coming from terrains and mineral deposits cropping out in the studied area. The shale-normalized patterns of yttrium and REE estimated for the dissolved phase show …

MineralEcologySettore BIO/02 - Botanica SistematicaRare earthGeochemistrychemistry.chemical_elementSedimentWeatheringYttriumParticulatesRare-earth elements Gulf of Thailand Eu and Gd anomaliesSeafloor spreadingOceanographychemistryGeneral Earth and Planetary SciencesMangroveEcology Evolution Behavior and SystematicsGeologyGeneral Environmental ScienceChemistry and Ecology
researchProduct

Radiation hardening of Rare-Earth doped fiber amplifiers

2012

We investigated the radiation hardening of optical fiber amplifiers operating in space environments. Through a real-time analysis in active configuration, we evaluated the role of Ce in the improvement of the amplifier performance against ionizing radiations. Ce-codoping is an efficient hardening solution, acting both in the limitation of defects in the host glass matrix of RE-doped optical fibers and in the stabilization of lasing properties of the Er3+-ions. On the one hand, in the nearinfrared region, radiation induced attenuation measurements show the absence of radiation induced P-related defect species in host glass matrix of the Ce-codoped active fibers; on the other hand, in the Ce-…

Optical amplifier optical spectroscopy Infrared Spectra Laser Excitation Rare-Earth Elements
researchProduct